• Vitousek, P. M. Litterfall, nutrient biking, and nutrient limitation in tropical forests. Ecology 65, 285–298 (1984).

    CAS 
    Article 

    Google Scholar
     

  • Wright, S. J. et al. Plant responses to fertilization experiments in lowland, species wealthy, tropical forests. Ecology 99, 1129–1138 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Turner, B. L. et al. Pervasive phosphorus limitation of tree species however not communities in tropical forests. Nature 555, 367–370 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fleischer, Ok. et al. Amazon forest response to CO2 fertilization rely on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a mannequin of mixed carbon, nitrogen and phosphorus biking. Biogeosciences 9, 3547–3569 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Solar, Y. et al. Diagnosing phosphorus limitation in pure terrestrial ecosystems in carbon cycle fashions. Earths Future 5, 730–749 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, Q. et al. Nitrogen and phosphorus limitations considerably scale back allowable CO2 emissions. Geophys. Lett. 41, 632–637 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates web accumulations of carbon and nitrogen in land ecosystem: a meta evaluation. Ecology 87, 53–63 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Jordan, C. F. The nutrient steadiness of an Amazonian rainforest. Ecology 63, 647–654 (1982).

    CAS 
    Article 

    Google Scholar
     

  • Walker, T. W. & Syers, J. Ok. The destiny of phosphorus throughout pedogenesis. Geoderma 15, 1–19 (1976).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Crews, T. E. et al. Modifications in soil phosphorus fractions and ecosystem dynamics throughout an extended chronosequence in Hawaii. Ecology 76, 1408–1424 (1995).

    Article 

    Google Scholar
     

  • Hedin, L. O. et al. Nutrient losses over 4 million years of tropical forest improvement. Ecology 84, 2231–2255 (2003).

    Article 

    Google Scholar
     

  • Dalling, J. W. et al. in Tropical Tree Physiology (Springer, 2016).

  • Herrera, R. R. & Medina, E. Amazon ecosystems, their construction and functioning with explicit emphasis on vitamins. Interciencia 3, 223–231 (1978).


    Google Scholar
     

  • Quesada, C. A. et al. Variations in chemical and bodily properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Quesada, C. A. et al. Basin extensive variations in Amazon forest construction and performance are mediated by each soils and local weather. Biogeosciences 9, 2203–2246 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Mercado, L. et al. Variations in Amazon forest productiveness correlated with foliar vitamins and modelled charges of photosynthetic carbon provide. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3316–3329 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wright, S. J. Plant responses to nutrient addition experiments performed in tropical forests. Ecol. Monogr. 89, e01382 (2019).

    Article 

    Google Scholar
     

  • Yang, X. et al. The consequences of phosphorus cycle dynamics carbon sources and sink within the Amazon area: a modelling research utilizing ELM v1. J. Geophys. Res. Biogeosci. 124, 3686–3698 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Sollins, P. Components influencing species composition in tropical lowland rain forest: does soil matter? Ecology 79, 23–30 (1998).

    Article 

    Google Scholar
     

  • Alvarez-Clare, S. et al. A direct check of nitrogen and phosphorus limitation to web major productiveness in a lowland tropical moist forest. Ecology 94, 1540–1551 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wright, S. J. et al. Potassium, phosphorus, or nitrogen restrict root allocation, tree progress, or litter manufacturing in a lowland tropical forest. Ecology 92, 1616–1625 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Sayer, E. J. et al. Variable responses of lowland tropical forest nutrient standing to fertilization and litter manipulation. Ecosystems 15, 387–400 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Ganade, G. & Brown, V. Succession in previous pastures of central Amazonia: position of soil fertility and plant litter. Ecology 83, 743–754 (2002).

    Article 

    Google Scholar
     

  • Markewitz, D. et al. Soil and tree response to P fertilization in a secondary tropical forest supported by an Oxisol. Biol. Fertil. Soils 48, 665–678 (2012).

    Article 

    Google Scholar
     

  • Davidson, E. et al. Nitrogen and phosphorus limitation of biomass progress in a tropical secondary forest. Ecol. Appl. 14, 150–163 (2004).

    Article 

    Google Scholar
     

  • Massad, T. et al. Interactions between fireplace, vitamins, and bug herbivores have an effect on the restoration of variety within the southern Amazon. Oecologia 172, 219–229 (2013).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Newbery, D. M. et al. Does low phosphorus provide restrict seedling institution and tree progress in groves of ectomycorrhizal bushes in a central African rainforest? New Phytol. 156, 297–311 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mirmanto, E. et al. Results of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1825–1829 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lugli, L. F. et al. Fast responses of root traits and productiveness to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 230, 116–128 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Quesada, C. A. et al. Soils of Amazonia with explicit reference to the rainfor websites. Biogeosciences 8, 1415–1440 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Giardina, C. et al. Main manufacturing and carbon allocation in relation to nutrient provide in a tropical experiment forest. Glob. Change Biol. 9, 1438–1450 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Rowland, L. et al. Scaling leaf respiration with nitrogen and phosphorus in tropical forests throughout two continents. New Phytol. 214, 1064–1077 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vicca, S. et al. Fertile forests produce biomass extra effectively. Ecol. Lett. 15, 520–526 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–826 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hinsinger, P. How do plant roots purchase mineral vitamins? Chemical processes concerned within the rhizosphere. Adv. Agron. 64, 225–265 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Van Langehove, L. et al. Fast root assimilation of added phosphorus in a lowland tropical rainforest of French Guiana. Soil Biol. Biochem. 140, 107646 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Martins, N. P. et al. Superb roots stimulate nutrient launch throughout early phases of litter decomposition in a central Amazon rainforest. Plant Soil 469, 287–303 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Cordeiro, A. L. et al. Superb root dynamics differ with soil and precipitation in a low-nutrient tropical forest within the central Amazonia. Plant Environ. Work together. 220, 3–16 (2020).

    Article 

    Google Scholar
     

  • Yavitt, J. Soil fertility and high-quality root dynamics in response to 4 years of nutrient (N,P, Ok) fertilization in a lowland tropical moist forest, Panamá. Austral. Ecol. 36, 433–445 (2011).

    Article 

    Google Scholar
     

  • Wurzburger, N. & Wright, S. J. Superb root responses to fertilization reveal a number of nutrient limitation in a lowland tropical forest. Ecology 96, 2137–2146 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Waring, B. G., Aviles, D. P., Murray, J. G. & Powers, J. S. Plant group responses to face stage nutrient fertilization in a secondary tropical dry forest. Ecology 100, e02691 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Jansens, I. A. et al. Reductions of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Alvarez Claire, S. et al. Do foliar, litter, and root nitrogen and phosphorus focus mirror nutrient limitation in a lowland tropical moist forest? PLoS ONE 10, e0123796 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bouma, T. in Advances in Photosynthesis and Respiration Vol. 18 (eds Lambers, H. & Ribas-Carbo, M.) 177–194 (Springer, 2005).

  • Malhi, Y. et al. Complete evaluation of carbon productiveness, allocation and storage in three Amazonian forests. Glob. Change Biol. 15, 1255–1274 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Aragão, L. E. O. et al. Above and under floor web major productiveness throughout ten Amazonian forests on contrasting soils. Biogeosciences 6, 2759–2778 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Cox, P. M. et al. Sensitivity of tropical carbon to local weather change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Quesada, C. A. & Lloyd, J. in Interactions Between Biosphere, Environment and Human Land Use within the Amazon Basin (eds Nagy, L. et al.) 267–299 (Springer, 2016).

  • Girardin, C. A. J. et al. Seasonal tendencies of Amazonian rainforest phenology, web major manufacturing, and carbon allocation. Glob. Biogeochem. Cycles 30, 700–715 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Laurance, W. F. et al. An Amazonian rainforest and its fragments as a laboratory of world change. Biol. Rev. 93, 223–247 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • De Oliveira, A. & Mori, S. A. A central Amazonia terra firme forest. I. Excessive tree species richness on poor soils. Biodivers. Conserv. 8, 1219–1244 (1999).

    Article 

    Google Scholar
     

  • Ferreira, S. J. F., Luizão, F. J. & Dallarosa, R. L. G. Throughfall and rainfall interception by an upland forest submitted to selective logging in Central Amazonia [Portuguese]. Acta Amaz. 35, 55–62 (2005).

    Article 

    Google Scholar
     

  • Tanaka, L. D. S., Satyamurty, P. & Machado, L. A. T. Diurnal variation of precipitation in central Amazon Basin. Int. J. Climatol. 34, 3574–3584 (2014).

    Article 

    Google Scholar
     

  • Duque, A. et al. Insights into regional patterns of Amazonian forest construction and dominance from three giant terra firme forest dynamics plots. Biodivers. Conserv. 26, 669–686 (2017).

    Article 

    Google Scholar
     

  • Martins, D. L. et al. Soil induced impacts on forest construction drive coarse wooden particles shares throughout central Amazonia. Plant Ecol. Divers. 8, 229–241 (2014).

    Article 

    Google Scholar
     

  • Metcalfe, D. B. et al. A technique for extracting plant roots from soil which facilitates speedy pattern processing with out compromising measurent accuracy. New Phytol. 174, 697–703 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chave, J. et al. Improved allometric to estimate the above floor biomass of tropical bushes. Glob. Change Biol. 20, 3177–3190 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Chave, J. et al. In direction of a worldwide wooden economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Zanne, A. E. et al. International Wooden Density Database https://doi.org/10.5061/dryad.234 (2009).

  • Higuchi, N. & Carvalho, J. A. in Anais do Seminário: Emissão e Sequestro de CO2—Uma Nova Oportunidade de Negócios para o Brasil (CVRD, 1994).

  • Brienen, R. J. W., Philips, O. L. & Zagt, R. J. Long run decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Malhado, A. C. M. et al. Seasonal leaf dynamics in an Amazonian tropical forest. Forest Ecol. Manag. 258, 1161–1165 (2009).

    Article 

    Google Scholar
     

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Bundle: exams in linear combined results fashions. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar
     

  • Bates, D., Marcher, M., Bolker, B. M. & Walker, S. C. Becoming linear combined results fashions utilizing lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar
     

  • Moraes, A. C. M. et al. Superb Litterfall Manufacturing and Nutrient Composition Knowledge from a Fertilized Website in Central Amazon, Brazil (NERC, 2020).

  • Cunha, H. F. V. et al. Superb Root Biomass in Fertilised Plots within the Central Amazon, 2017–2019 (NERC Environmental Data Knowledge Centre, 2021).

  • Cunha, H. F. V. et al. Tree Census and Diameter Increment in Fertilised Plots within the Central Amazon, 2017–2020 (NERC Environmental Data Knowledge Centre, 2021).

  • Cunha, H. F. V. et al. Leaf Space Index (LAI) in Fertilised Plots within the Central Amazon, 2017–2018 (NERC Environmental Data Knowledge Centre, 2021).

  • By news

    Leave a Reply

    Your email address will not be published.