• Bennett, F. C. et al. A mixture of ontogeny and CNS setting establishes microglial identification. Neuron 98, 1170–1183.e8 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Biase, L. M. D. et al. Native cues set up and keep region-specific phenotypes of basal ganglia microglia. Neuron 95, 341–356.e6 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hammond, T. R. et al. Single-cell RNA sequencing of microglia all through the mouse lifespan and within the injured mind reveals complicated cell-state modifications. Immunity 50, 253–271.e6 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. Heterogeneity within the distribution and morphology of microglia within the regular grownup mouse mind. Neuroscience 39, 151–170 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Colonna, M. & Butovsky, O. Microglia operate within the central nervous system throughout well being and neurodegeneration. Annu. Rev. Immunol. 35, 441–468 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Prinz, M., Jung, S. & Priller, J. Microglia biology: one century of evolving ideas. Cell 179, 292–311 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fujita, Y., Nakanishi, T., Ueno, M., Itohara, S. & Yamashita, T. Netrin-G1 regulates microglial accumulation alongside axons and helps the survival of layer V neurons within the postnatal mouse mind. Cell Rep. 31, 107580 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bella, D. J. D. et al. Molecular logic of mobile diversification within the mouse cerebral cortex. Nature 595, 554–559 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Molyneaux, B. J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J. D. Fezl is required for the start and specification of corticospinal motor. Neuron 47, 817–831 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kwan, Ok. Y., Šestan, N. & Anton, E. S. Transcriptional co-regulation of neuronal migration and laminar identification within the neocortex. Growth 139, 1535–1546 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hartfuss, E. et al. Reelin signaling instantly impacts radial glia morphology and biochemical maturation. Growth 130, 4597–4609 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jung, S. et al. Evaluation of fractalkine receptor CX3CR1 operate by focused deletion and inexperienced fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates throughout neuroinflammation. Science 363, eaat7554 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Marsh, S. E. et al. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human mind. Nat. Neurosci. 25, 306–316 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell decision. Nature 566, 388–392 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Askew, Ok. et al. Coupled proliferation and apoptosis keep the fast turnover of microglia within the grownup mind. Cell Experiences 18, 391–405 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Villa, A. et al. Intercourse-specific options of microglia from grownup mice. Cell Rep. 23, 3501–3511 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mao, W., Zaslavsky, E., Hartmann, B. M., Sealfon, S. C. & Chikina, M. Pathway-level info extractor (PLIER) for gene expression knowledge. Nat. Strategies 16, 607–610 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moffitt, J. R. et al. Molecular, spatial, and practical single-cell profiling of the hypothalamic preoptic area. Science 362, eaau5324 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tasic, B. et al. Grownup mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kongsui, R., Beynon, S. B., Johnson, S. J. & Walker, F. R. Quantitative evaluation of microglial morphology and density reveals exceptional consistency within the distribution and morphology of cells throughout the wholesome prefrontal cortex of the rat. J. Neuroinflamm. 11, 182 (2014).

    Article 

    Google Scholar
     

  • Hodge, R. D. et al. Conserved cell sorts with divergent options in human versus mouse cortex. Nature 573, 61–68 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hao, Y. et al. Built-in evaluation of multimodal single-cell knowledge. Cell 184, 3573–3587.e29 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Matho, Ok. S. et al. Genetic dissection of the glutamatergic neuron system in cerebral cortex. Nature 598, 182–187 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from mixed expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Easley-Neal, C., Foreman, O., Sharma, N., Zarrin, A. A. & Weimer, R. M. CSF1R ligands IL-34 and CSF1 are differentially required for microglia improvement and upkeep in white and grey matter mind areas. Entrance. Immunol. 10, 2199 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Badimon, A. et al. Unfavorable suggestions management of neuronal exercise by microglia. Nature 586, 417–423 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Akiyoshi, R. et al. Microglia improve synapse exercise to advertise native community synchronization. Eneuro 5, ENEURO.0088–18.2018 (2018).

    Article 

    Google Scholar
     

  • Cserép, C. et al. Microglia monitor and defend neuronal operate by specialised somatic purinergic junctions. Science 367, 528–537 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. U. et al. Neuronal community exercise controls microglial course of surveillance in awake mice through norepinephrine signaling. Nat. Neurosci. 22, 1771–1781 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ye, Z. et al. Instructing perisomatic inhibition by direct lineage reprogramming of neocortical projection. Neuron 88, 475–483 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lodato, S. et al. Excitatory projection neuron subtypes management the distribution of native inhibitory interneurons within the cerebral cortex. Neuron 69, 763–779 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wester, J. C. et al. Neocortical projection neurons instruct inhibitory interneuron circuit improvement in a lineage-dependent method. Neuron 102, 960–975.e6 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tomassy, G. S. et al. Distinct profiles of myelin distribution alongside single axons of pyramidal neurons within the neocortex. Science 344, 319–324 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Favuzzi, E. et al. GABA-receptive microglia selectively sculpt creating inhibitory circuits. Cell 184, 4048–4063.e32 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Velmeshev, D. et al. Single-cell genomics identifies cell sort–particular molecular modifications in autism. Science 364, 685–689 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hirata, T. et al. Zinc finger gene Fez‐like capabilities within the formation of subplate neurons and thalamocortical axons. Dev. Dynam. 230, 546–556 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic knowledge throughout completely different circumstances, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq knowledge utilizing regularized unfavourable binomial regression. Genome Biol. 20, 296 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nestorowa, S. et al. A single-cell decision map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20–e31 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Finak, G. et al. MAST: a versatile statistical framework for assessing transcriptional modifications and characterizing heterogeneity in single-cell RNA sequencing knowledge. Genome Biol. 16, 278 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • He, L. et al. NEBULA is a quick unfavourable binomial combined mannequin for differential or co-expression evaluation of large-scale multi-subject single-cell knowledge. Commun. Biology 4, 629 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R Package deal for evaluating organic themes amongst gene clusters. Omics J. Integr. Biology 16, 284–287 (2012).

    CAS 
    Article 

    Google Scholar
     

  • By news

    Leave a Reply

    Your email address will not be published.